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Estimates of General Mayer Graphs. 
IV. On the Computation of Gaussian Integrals 
by the Star-Mesh Transformation 
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We point  out that, to compute  by hand  a Gaussian integral f exp .  
( - -~]LEer  YLr~)dr~+ I " "" dr,+k,  where the sum runs over all lines L = (i, j )  of 
a graph and r/j = Irl - rj[, the simplest way is to use the star-mesh transforma- 
tion, well known in electrical network theory. We apply this to test, on a 
relatively complicated n-graph, the accuracy of an estimation method that we 
proposed elsewhere [Phys. Lett. 62A:295 (1977)]. 
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1. INTRODUCTION 

In preceding articles, (>3) we have developed an estimation method that 
provides upper bounds for arbitrary n-graphs. An n-graph is a multiple 
integral of the following type: 

F(r 1 . . . . .  r,;A)=~kL~erfL(ri, rj)dr,,+l'..drn+ k (1.1) 

(For definition of the symbols, see Ref. 2.) In considering physical prob- 
lems, it is important to know whether our estimation method can provide a 
correct order of magnitude for the n-graphs. To try to answer this question, 
it is instructive to test quantitatively the accuracy of our estimates on 
Gaussian n-graphs. Indeed, in this case, both the n-graph and any of its 
upper bounds can be computed analytically. A Gaussian n-graph is an n 
graph with Gaussian lines and A = N d. Gaussian lines are defined as 

fL(r) = exp(--yLr 2) (1.2) 
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YL can be any real positive number and is called the weight (or the 
admittance) of line L. 

In their fundamental review article on Mayer's theory of classical 
systems at equilibrium, (4) Uhlenbeck and Ford have recalled the formulas 
that give Gaussian n-graphs in terms of determinants of minors of the 
admittance matrix of F. These formulas are proved by diagonalizing the 
quadratic form ~/~ yLr~. (See, for example, Ref. 5.) They are well adapted 
to electronic computers, and have been used to compute a certain number 
of Gaussian 1- and 2-graphs. (4'6) However, if one wants to compute n 
graphs by hand, the use of these formulas is laborious, and one may prefer 
topological methods. Uhlenbeck and Ford (4) have recalled Kirchhoff's 
method, which expresses these determinants as sums of admittance tree 
products, and the recurrence method of Brooks et al., (7) which expresses 
these determinants as sums of determinants associated with simpler graphs, 
obtained by deleting and contracting lines. 

These powerful methods are of constant use in electrical network 
theory. (See, for example, Ref. 8.) However, to compute n-graphs, it is 
much simpler to use the star-mesh transformation, (9'I~ as we point out in 
this paper. 

In Section 2, we compute by elementary means the n-graph 
K l , ( r  l, . . . ,  r~) made of one field point linked to n root points. In Section 
3, we show that computing a Gaussian n-graph by performing the partial 
integrations is equivalent to computing the above-mentioned determinants 
through the star-mesh transformation. ~9'1~ In Section 4, we compare the 
various ways of computing Gaussian n-graphs. In Section 5, we test the 
accuracy of our estimation method on an example. 

2. EXPRESSION OF THE STAR Kl,m(rl . . . . .  r~) 
AND OF THE CHAIN Cm(rl,r2) 

We want to compute the following m graph: 

m 

Kl,m(r, . . . . .  rm) = f i~__l_ exp(-yir2ip)dre (2.1) 

This integral is represented graphically in Fig. la, and its representative 
g r a p h  g l ,  m is called a star. 2 We have 

2 This definition of a star should not be confused with the definition used in Ref. 4, where a 
star means any connected graph without articulation point, 
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Fig. 1. The m-graph Kt.m(r I . . . . .  r,~) defined by Eq. (2.1) is represented in (a) by the star 
K~, m. It is equal, by Eq. (2.2), to the Gaussian function S -a/2Km(r I . . . . .  rm), represented in 
(b) by the complete graph Km (also called a mesh) with modified weights S -  lyiy j. 

with 

( ~  , ~) ,2~a, Kl,,~(r 1 . . . . .  rm) = S - d / 2 e x p  - S y iy jr~ 
1 << i< j  

S = ~ y; (2.2b) 
i=1  

(2.2) can  of course be proved  easily as a consequence of Kirchhoff ' s  
theorem(n,1 i) but  it is instructive to obta in  it by  e lementary  means.  

To  this end, let us set rgp = r a + rip and  take point  1 as the origin of 
the coordinate  system. 

(2.1) is then reexpressed as 

)] K1, m = exp - ~=2 yiF2il exp -- Sr~p + 2rlp.  k yiril drip 
i=  i = 2  

( ~ ~. , .  ~,) = S - d / 2 e x p  - k y i r ~  + ~  
i = 2  i,j=2 

(2.3) 

By making  use of the identi ty - 2 r i l  . r  jl = r ~ -  r 2 - 5 ~ ,  (2.3) t ransforms 
into (2.2). 
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3. THE STAR-MESH TRANSFORMATION (9'1~ 
FOR GAUSSIAN n-GRAPHS 

To compute a given Gaussian n-graph, we can perform the integrations 
in any order. Let us assume we integrate first over r. + k: 

F(r,, r.) f d r . + l ' '  dr~+k_ , f , . . . .  = . II 'fL (r~j) I-["fL (r, .  + k) dr. + k (3.1) 

where the first product I-[' runs over all lines of 17 not incident on point 
n + k, and the second product l'I" runs over all lines that are incident on 
n + k. The last integral in (3.1) is of type (2.1), and thus we have the 
following lemma. 

kemma 3.1. (Star-mesh transformation for Gaussian n-graphs.) Let 
F be an arbitrary weighted graph with weight YL attached to any line L and 
I'(r I . . . . .  r,) the Gaussian n-graph with lines fL ( r )=  exp(--yLr2), repre- 
sented by F. We have 

r ( r ~ , . . . ,  r,) = S-a /2y( r ,  . . . .  , r,) (3.2) 

where 7 is the weighted graph obtained from F by replacing a star K1, m of F 
(i.e., a subgraph of F made of one given point/7, together with all its 
adjacent points and all its incident lines) by the complete graph K,~ (also 
called a mesh) obtained by joining each pair (i, j )  of points adjacent to p by 
a line L and assigning to L the weight 

W L = S - l y  i y j  (3.3) 

In (3.2) and (3.3), Yi andyj  are the weights of lines (p, i) and (p, j )  in F, and 
S = ~ y ;  is the sum of the weights of all the lines incident top. 

We see that 7 is exactly the graph obtained from 17 by applying the 
star-mesh transformation at pointp, {9'1~ i.e., by replacing in 17 the star K1, m 
by the mesh K m. Since 7 has one field point less than F, after k successive 
applications of Lemma 3.1, we obtain an n-graph with no field point, i.e., a 
Gaussian function. 

4. COMPARISON OF THE VARIOUS METHODS OF COMPUTATION 
OF GAUSSIAN n-GRAPHS 

For the sake of simplicity, we restrict our discussion to the case of 
1-graphs. We have (4) 

r ( r 0  = ~(,/2)d~ [ A(F) ] - d/2 (4.1) 

where A(F) is the determinant of a first-order minor of the admittance 
matrix of F, and the graph F has k field points and l lines. 
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A(F) can be computed by generating the set of all spanning trees T~ of 
F (see, for example, Ref. 12) and making use of Kirchhoff's theorem(4'11): 

A(F) = ~ H YL (4.2) 
i L~ET/ 

where the product in (4.2) runs over all lines of 7],.. 
Another method to compute A(F) is to make use of the recurrence 

relation of Brooks et aL(7'4) : 

A(F) = A(F (L)) + yLA(F(L)) (4.3) 

where s eL> is the graph with (k + 1) points a n d ( / -  1) lines obtained 
from F by deleting, line L,  a n d  U(L~ is the graph with k points and ( l -  I) 
lines obtained by contracting line L (i.e., by identifying its two end points). 

The number of graphs that must be generated, when using formulas 
(4.2) or (4.3), rapidly becomes very large as the number of points and lines 
are increased. For example, if we use (4.2), we must generate (k + 1) k- 1 
trees for the complete graph Kk+ l, and more than ( I l k )  k trees for a 
uniformly coverable graph. (3b) If we use (4.3), the total number of graphs 
generated in the process can be estimated to be of order a k, where a is the 
average number k -1 ~ il~ (this is exact if all the l~ are equal) l[ = lg-(k-t), where 
lg is the number of  lines of  the graph obtained from P after contracting i 
lines. 

On the other hand, the star-mesh transformation given in Lemma 3.1 
generates only k 1-graphs and, more generally, k n-graphs. Therefore, it is 
much more convenient than (4.2) and (4.3) to compute Gaussian n-graphs 
by hand, as can be seen in Fig. 2. It must be noted that the star-mesh 

(a) 

3 

114 

ACt, - -4x : lSx 7p//  : 273 

13/4 4 
Fig. 2. The determinant A(F) associated to the 1-graph (a) is computed in (b) by means of 
the star-mesh transformation. To compute it by the recurrence method of Brooks et aL, we 
would have to draw about 20 graphs, and by Kirchhoff's method, 75 spanning trees. 
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transformation is not always advantageous in electrical network theory, as 
compared to Kirchhoff's method, because the weights are variable (the 
graph being considered as fixed). On the other hand, in statistical mechan- 
ics the weights are constant (the graph describing the set of all the graphs of 
a certain type: connected, irreducible, etc.), and the star-mesh transforma- 
tion is then very efficient. 

5. USE OF GAUSSIAN n-GRAPHS TO TEST QUANTITATIVELY 
THE ACCURACY OF OUR ESTIMATION METHOD 

Let us consider the 4-graph F(r I . . . . .  r4) of Fig. 3a. It occurs in the 
development of the 4-body correlation function, in the coefficient of the 
fifth power of the density. It occurs also in other problems, for example in 
the scattering of particles associated with a self-interacting field with ~4 
interaction (see Fig. 3b). 

The covering of Fig. 3c gives the canonical boundS2) : 

l ' ( r  I . . . . .  1"4) 

< [ C4(rl 2) C5 (rl 2) C4(rl 3) C ~( r 14) C2 (r23) C2 (r24) C2( r 34) C6(r 34) ]l/4 

(5.1) 

3 4 

Fig. 3. The 4-graph (a) occurs in the development of the 4-body correlation function, and as 
a component of the diffusion graph (b). The subgraphs of (c) make a covering Of (a). 
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where Cm(rij ) denotes the chain with m lines f2(r) and end points i and j. 
Cm(r) can be computed by Fourier transform(13): 

with 

- - I  JO ['(~ [ f2(k ) ] mk-sinkrdk Cm(r)  = 
2~r 2 r 

(5.2) 

s  r f2(r)sinkrdr (5.3) f2(k) = 4rr 

Cm(r), and thus the upper bound (5.1), can be computed easily for any 
line. For example, for the Debye-Hfickel model of ionized gases (or when 
is a three-dimensional field of unit mass), we have f(r) = e - r / r ,  and so 

(4~r) m 
C m (r) - k ) m k sin kr dk (5.4) 2rr2r s  1 arctan ~ 

With lines f ( r )=  e - r / r  or other lines of realistic models, the 4-graph 
F ( r l , . . . ,  r4) is far too complicated to be computable with present-day 
computers. Therefore, to test the accuracy of (5.1), we resort to the 
Gaussian model. F(r I . . . . .  r4), computed by the star-mesh transformation, 
yields (see Fig. 4). 

F ( F I , . . .  , r4) = 6.415 X 10 -5 e x p [ -  (0.327r22 + 0.298r23 + 0.548r~4 

+ 0.548r223 + 0.298r24 + 0.473r~4) ] 

(5.5) 

and the upper bound (5.1) is equal to 

B ( r ~ , . . . ,  r4)= 16.57 x 10-' exp [ - (0.225r~2 + 0.125r23 + 0.250r24 

+ 0.250r23 + 0.167r224 + 0.333r324) ] 

(5.6) 

(5.6) overestimates the value of (5.5) at the origin by a factor 2.6, and the 
coefficients of r 2 by factors lying between 1.4 and 2.4. This shows that the 
particular estimate (5.1) has a correct order of magnitude for small-to- 
intermediate distances. 

Upper bounds obtained by means of chains will be studied systemati- 
cally elsewhere. We note here that such bounds give indications on the rate 
of decay of n-graphs at large distances or, equivalently, on the location of 
poles of their Fourier transforms (i.e., Feynman graphs in momentum 
space), since the rate of decay of chains can usually be easily determined 
from (5.2). 
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Fig. 4. Computation of the 4-graph of Fig. 4a by successive application of the star-mesh 
transformation. The additional factors are 4-a/2exp[-(1/4)r~4] for (a); 16 -a/2 e x p -  [(1/4) 
r23 + (1/4)r324] for (b); 60 -a/2 exp - [(1/15)r22 + (4/15)r23 + (1/15)r24 + (1/15)r23 + (4/15) 
r24 + (19/60)r24] for (c); 209 -a/2 exp - [(1/11)r22 + (5/11)r~3 + (2/11)r24 + (16/209)r23 + 
(3/11)r~4 + (4/1 l)r~4 ] for (d). The final result is (624) -d/2 exp - [(17/52)r~z + (57/104)r~3 + 
(31 / 104)r~4 + (31 / 104) r23 + (57 / 104) r24 + (295/624) r24]. 

A C K N O W L E D G M E N T S  

T h e  a u t h o r  is v e r y  g ra te fu l  to P ro fessor  J. G r o e n e v e l d  for  ve ry  usefu l  

sugges t ions  a n d  c o m m e n t s  on  the  m a n u s c r i p t .  
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